
A Fault-Tolerant Exascale Parallel Runtime

Amos Waterland,1, ∗ Jonathan Appavoo,2 Elaine Angelino,1 Ryan Adams,1 and Margo Seltzer1

1Harvard University
2Boston University

Introduction
Major conceptual challenges still remain in making
efficient use of highly parallel computing systems.
Despite decades of sophisticated research, we still
do not have computers that we can program in the
sequential model best suited to the human mind,
but whose performance automatically scales with the
number of processors. As exascale computer systems
appear on the horizon this becomes an increasingly
critical challenge, and it seems clear that we will need
new approaches.

The new approach we describe in this position pa-
per is to transform sequential computation into a
statistical pattern recognition and caching problem.
We do this because pattern recognition and search-
ing a distributed cache generally does scale with the
number of processors and generally is fault-tolerant.

Based on our work at IBM Research on the Blue
Gene/P team [1, 22], we believe that writing explic-
itly parallel fault-tolerant programs for exascale sys-
tems is unlikely to work for any but a small class
of applications. We propose that exascale systems
can be sequentially programmed in a fault-oblivious
manner if large quantities of information about the
runtime structure of sequential programs can be rea-
soned about and exploited. Manually formalizing
all this information through traditional approaches,
which rely on semantic analysis at the language level,
has historically proved challenging. We are therefore
taking a lower level approach, delaying explicit se-
mantic analysis and instead first modeling von Neu-
mann computation as a dynamical system, i.e., a
state space and an evolution rule, which gives a nat-
ural way to use statistical inference to then automat-
ically learn powerful representations of this informa-
tion that carry their own inferred semantics. This
is in rough analog to the painful lesson learned by
the computer vision community, in which heroic but
mostly failed work was done to impose human-level
semantics on raw images in order to recognize ob-
jects. The statistical pattern recognition approach
arose—and now dominates vision research—by real-
izing that much more powerful image features can be
learned than can be imposed by human experts.

Our model gives us a promising new approach to
making efficient use of highly parallel computing sys-
tems – we use probability distributions and sym-
metry transforms empirically learned over the state
space and a massively parallel pool of machine sim-
ulators to achieve automatic speedup though a spec-

ulative, generalized form of memoization. We have
built a prototype MPI program—currently in opera-
tion on the Intrepid 40-rack Blue Gene/P system at
Argonne National Lab—that uses this model of com-
putation to automatically achieve linear speedups for
some simple sequential binary programs on up to
32,768 nodes.

In our model, the complete state of a computer is
represented as the coordinates of a point in our state
space. Computation is effected by repeatedly apply-
ing our evolution rule, which maps each point in the
state space to its successor point by simulating the
instruction encoded in the coordinates. A sequence
of such transitions forms a path through state space
called a trajectory. Some trajectories terminate in
fixed points – points that are mapped to themselves
by the evolution rule. The result of computation is
obtained by waiting until the trajectory being solved
halts at its fixed point, then reading out the an-
swer from the coordinates. Programming is effected
by preparing an initial condition – selecting a point
in state space whose coordinates represent the ini-
tial values of the registers, machine code, and data.
The state of computation is just a vector, a trace
of computation is just a matrix, and we have a ge-
ometry of computation complete with distance and
angle between states of computation. This model
gives a natural way to apply inference, in the form of
Bayesian posterior maximization and deep artificial
neural networks, through highly parallel execution
of Markov Chain Monte Carlo, simulated annealing,
and genetic algorithms.

In our prototype MPI program, each node im-
plements a machine simulator that has the same
state space and evolution rule, but is given differ-
ent initial conditions. Our prototype is invoked as
e.g. mpirun -np 32768 runtime program, where
runtime is our prototype and program is a sequential
binary that we want to accelerate. The nodes behave
as a single giant runtime that cooperates in parallel
to accelerate the execution of the supplied program.
Each node maintains a state vector representation
of its simulated computer, and has a simulation loop
that calls the evolution rule – which simulates one in-
struction per invocation. Each node also maintains a
compressed cache of initial and final points of state
space trajectories it has already solved, and when it
has no other work to do, garbage collects and up-
dates its cache by speculatively solving trajectories
given predictions for regions of state space that other



2

nodes are likely to visit.
At regular intervals, each node broadcasts its cur-

rent state vector to the other nodes, all of whom in
response search their caches for a match. A match is
found when the broadcast state vector is equivalent
under a symmetry transform to the initial point of a
previously solved trajectory. This trajectory was ei-
ther speculatively solved given a prediction or lies on
an unrelated trajectory whose initial condition is a
different program that for a time executed a sequence
of instructions identical to those of the current pro-
gram. In both cases, the node that found a match
applies the inverse symmetry transform and replies
with the final point of the matched trajectory.

Upon receiving the reply, the node that sent the
broadcast then jumps forward—in state space and
simulation time—from its current point to the final
point it received in reply. This instantaneous jump
through state space—which skips over the many ap-
plications of the evolution rule that it would have had
to do—is called tunneling. There is no free lunch, as
some node somewhere had to solve each trajectory
up to symmetries, but from the perspective of the
node that sent the broadcast – it has been acceler-
ated.

Tunneling can be seen as a speculative, general-
ized form of memoization. Traditional memoization
speeds up programs by building a table of the inputs
and outputs of pure functions. Once a memoized
function has been executed for a particular input, it
never has to be executed again when called with the
same input; the result can simply be looked up in the
table. Tunneling is a generalization of memoization
in that it can jump forward from any program lo-
cation – not just at a function boundary, and it can
use results from one program to speed up a differ-
ent program. It is speculative in that instead of just
storing the results of computation that has already
happened, it solves trajectories in the hope that they
will be useful later to other nodes. These tunnels can
be thought of as warping the state space of compu-
tation so that useful and important trajectories are
drastically compressed.

This system design is probabilistic, in that it uses
Bayesian inference to calculate the predictive prob-
ability distributions used by speculative trajectory
solvers, but it is not probabilistic or approximate
computing in the sense that it might halt with the
wrong result. When predictions are poor, the worst
that can happen is that communication and simu-
lation overhead is not recovered. Error-correcting
codes are used to ensure that the system ignores
incorrect cache hits returned by failing nodes, and
the robust nature of statistical pattern recognition
means that node faults can be “trained around”. We
preserve the deterministic sequential programming
model, our initial conditions are prepared by gcc,
and the result of simulation is identical to that of

running the input binary program on a uniprocessor
computer. Our use of Bayesian inference also gives
a natural division of work on heterogeneous parallel
computers – in which speculative trajectory solvers
run on full-featured cores, but feature extraction and
predictive inference is done by massive arrays of sim-
ple processors in GPUs or neuromorphic devices.

Related work
A number of physicists have previously observed that
computers can be abstractly modeled as dynamical
systems [2, 6, 7, 9, 14, 24]. However, to our knowl-
edge we are the first to show how to operational-
ize this theory into a concrete practical application
that in principle allows sequential computation per-
formance to scale with node count. The idea of using
runtime statistics to accelerate programs is of course
an active area of research [3, 4, 12, 18]; our work
can be seen as somewhat related to Thread-Level
Speculation [5, 17, 21], Decoupled Software Pipelin-
ing [16, 23, 25], memoizing processors [11, 13, 15, 20],
advanced virtual machines [19, 26], caching cellular
automata [8], and perceptron branch prediction [10].

Challenges addressed
Explicit fault-tolerant parallel programming of exas-
cale systems will be extremely challenging. Our ap-
proach attempts to do an end-run around this chal-
lenge through the use of statistical pattern recogni-
tion and distributed cache search – which are known
to generally scale with the number of nodes and to
be fault-tolerant.

Maturity
This is early work, but we recently published a paper
on our current results[27] on up to 32,768 cores.

Uniqueness
This approach is somewhat unique to exascale sys-
tems because it is there that the challenge of explicit
parallel programming is most acute. In addition,
deep neural networks and distributed caches bene-
fit greatly from exascale systems.

Novelty
Scientific progress is sometimes made by turning
hard problems into different hard problems for which
we have better mathematical tools. We have turned
the problem of accelerating sequential von Neumann
computation into one of predictive inference in a dy-
namical system. Bayesian predictive inference has
seen rapid growth in recent decades due to increased
high-performance computing resources, but turning
inference on von Neumann computation itself into
an exascale high-performance computing job has re-
ceived very little attention.

Applicability
Our model of computation has received interest from
programming language professors interested in find-
ing bugs via trajectory divergence.

Effort
We have three graduate students working on this
project full-time; advised by three professors.



3

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under Fel-
low ID 2012116808 and the Department of Energy Office of
Science under its agreement number DE-SC0005365.

∗ Electronic address: apw@seas.harvard.edu
[1] Jonathan Appavoo, Volkmar Uhlig, and Amos Wa-

terland, Project kittyhawk: building a global-scale
computer: Blue gene/p as a generic computing plat-
form, Operating Systems Review 42 (2008), no. 1,
77–84.

[2] Henry G. Baker, Thermodynamics and garbage col-
lection, SIGPLAN Not. 29 (1994), no. 4, 58–63.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia, Dynamo: a transparent dynamic optimiza-
tion system, ACM SIGPLAN Notices 35 (2000),
no. 5, 1–12.

[4] Sorav Bansal and Alex Aiken, Automatic genera-
tion of peephole superoptimizers, SIGPLAN Not. 41
(2006), no. 11, 394–403.

[5] Anasua Bhowmik and Manoj Franklin, A general
compiler framework for speculative multithreading,
Proceedings of the fourteenth annual ACM sympo-
sium on Parallel algorithms and architectures (New
York, NY, USA), SPAA ’02, ACM, 2002, pp. 99–108.

[6] Roger W. Brockett, Dynamical systems that sort
lists, diagonalize matrices and solve linear program-
ming problems, Proc. 27th IEEE Conf. Dec. and
Control (Austin, TX), Dec. 1988, pp. 799–803.

[7] Marco Giunti, Computation, dynamics, and cogni-
tion, Oxford University Press, 1997.

[8] Bill Gosper, Exploiting regularities in large cellular
spaces, Physica D. Nonlinear Phenomena (1984).

[9] John J. Hopfield, Hopfield network, Scholarpedia 2
(2007), no. 5.

[10] Daniel A. Jimenez and Calvin Lin, Dynamic branch
prediction with perceptrons, 2001.

[11] Y. Kamiya, T. Tsumura, H. Matsuo, and
Y. Nakashima, A speculative technique for auto-
memoization processor with multithreading, Paral-
lel and Distributed Computing, Applications and
Technologies, 2009 International Conference on, dec.
2009, pp. 160 –166.

[12] Henry Massalin, Synthesis: an efficient implementa-
tion of fundamental operating system services, Ph.D.
thesis, New York, NY, USA, 1992, UMI Order No.
GAX92-32050.

[13] Donald Michie, Memo functions and machine learn-
ing, Nature.

[14] Todd Mytkowicz, Amer Diwan, and Elizabeth
Bradley, Computer systems are dynamical systems,
Chaos: An Interdisciplinary Journal of Nonlinear
Science 19 (2009), no. 3, 033124.

[15] Zach Purser, Karthik Sundaramoorthy, and Eric
Rotenberg, A study of slipstream processors, Pro-
ceedings of the 33rd annual ACM/IEEE interna-
tional symposium on Microarchitecture (New York,
NY, USA), MICRO 33, ACM, 2000, pp. 269–280.

[16] Arun Raman, Hanjun Kim, Thomas R. Mason,
Thomas B. Jablin, and David I. August, Speculative

parallelization using software multi-threaded trans-
actions, Proceedings of the fifteenth edition of AS-

PLOS on Architectural support for programming
languages and operating systems (New York, NY,
USA), ASPLOS ’10, ACM, 2010, pp. 65–76.

[17] Lawrence Rauchwerger and David Padua, The lrpd
test: speculative run-time parallelization of loops
with privatization and reduction parallelization, Pro-
ceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementa-
tion (New York, NY, USA), PLDI ’95, ACM, 1995,
pp. 218–232.

[18] Eric Rotenberg, Steve Bennett, and James E. Smith,
Trace cache: A low latency approach to high band-
width instruction fetching, International Symposium
on Microarchitecture, 1996, pp. 24–35.

[19] Emin Gün Sirer, Robert Grimm, Arthur J. Gregory,
and Brian N. Bershad, Design and implementation
of a distributed virtual machine for networked com-
puters, SOSP ’99: Proceedings of the seventeenth
ACM symposium on Operating systems principles
(New York, NY, USA), ACM, 1999, pp. 202–216.

[20] Gurindar S. Sohi, Scott E. Breach, and T. N. Vi-
jaykumar, Multiscalar processors, Proceedings of the
22nd annual international symposium on Computer
architecture (New York, NY, USA), ISCA ’95, ACM,
1995, pp. 414–425.

[21] J. Gregory Steffan, Christopher Colohan, Antonia
Zhai, and Todd C. Mowry, The stampede approach to
thread-level speculation, ACM Trans. Comput. Syst.
23 (2005), no. 3, 253–300.

[22] Jan Stoess, Udo Steinberg, Volkmar Uhlig, Jens
Kehne, Jonathan Appavoo, and Amos Waterland, A
lightweight virtual machine monitor for blue gene/p,
IJHPCA 26 (2012), no. 2, 95–109.

[23] William Thies, Vikram Chandrasekhar, and Saman
Amarasinghe, A practical approach to exploiting
coarse-grained pipeline parallelism in c programs,
Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (Wash-
ington, DC, USA), MICRO 40, IEEE Computer So-
ciety, 2007, pp. 356–369.

[24] Tommaso Toffoli, Action, or the fungibility of com-
putation, pp. 349–392, Perseus Books, Cambridge,
MA, USA, 1999.

[25] Neil Vachharajani, Ram Rangan, Easwaran Raman,
Matthew J. Bridges, Guilherme Ottoni, and David I.
August, Speculative decoupled software pipelining,
Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques
(Washington, DC, USA), PACT ’07, IEEE Com-
puter Society, 2007, pp. 49–59.

[26] Chad Verbowski, Emre Kiciman, Arunvijay Kumar,
Brad Daniels, Shan Lu, Juhan Lee, Yi-Min Wang,
and Roussi Roussev, Flight data recorder: Monitor-
ing persistent-state interactions to improve systems
management., OSDI, USENIX Association, 2006,
pp. 117–130.

[27] Amos Waterland, Jonathan Appavoo, and Margo
Seltzer, Parallelization by simulated tunneling, Pro-
ceedings of the USENIX Workshop on Hot Topics in
Parallelism (HotPAR) (2012).

mailto:apw@seas.harvard.edu

	Introduction
	Related work
	Challenges addressed
	Maturity
	Uniqueness
	Novelty
	Applicability
	Effort
	References

